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Abstract

Smallholder farmers in developing countries have always been ad-
versely affected by year-to-year variation in weather patterns. Low rain-
fall, high temperatures, floods, and other disasters can wreak havoc on
their livelihoods. Crop insurance has the potential to partially solve this
problem, but traditional indemnity-based insurance is generally too costly
to administer for smallholder agriculture. Index insurance, which provides
payouts based on regional satellite, weather, or crop cut data offers a po-
tential low-cost solution. However, developing accurate indices requires
ground-truth data, which itself is costly to collect. This paper explores a
new solution to this problem by combining existing household survey data
from the World Bank’s Living Standards Measurement Survey (LSMS)
with satellite data to develop a hypothetical index for maize production.
We show that by combining remotely sensed data and machine learning
techniques, we can construct an accurate crop production index. We com-
pare regularized regression, neural networks, and random forests, and are
able to obtain reasonably good yield predictions with neural networks and
random forests. This method is a promising new approach for developing
accurate index insurance products at low cost with large potential benefits
for smallholder farmers and governments seeking to address climate risk.

1 Introduction

Smallholder farmer livelihoods depend on crop production and livestock health,
and poor crop yields or animal deaths can lead households to consume less
or lower quality food, remove children from school, or forego critical medical
visits. Effective risk management tools therefore have the potential to be enor-
mously beneficial for smallholder households, but designing tools that are both
effective and low enough cost to be economically viable has been a challenge.
Index insurance is an approach to reducing risk for farmers whose potential
is currently growing rapidly due to recent improvements in satellite data and
machine learning methods. This paper proposes and tests a new approach to
leveraging satellite data for better index insurance by linking it to household
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surveys that record historic crop yields. To our knowledge, it is the first paper
to test the viability of this approach.

Index insurance differs from traditional indemnity insurance in that rather
than paying individual farmers for the losses they actually experience, it pays
farmers based on typical losses in a region. This has three advantages. First,
it is much less costly to administer because individual claims do not need to be
processed and investigated. Second, it mitigates the problem of moral hazard,
which might lead farmers to put less effort into maximizing their yields if they
know insurance payments will make up for shortfalls. Third, it eliminates the
problem of adverse selection, which might lead farmers with unusually risky or
low quality plots of land to opt into coverage.

Because payouts to farmers are based on regional averages, index insurance
is only useful when yield shortfalls are sufficiently correlated at the regional level
and when the index itself is accurate enough to map closely to farmer outcomes.
As discussed by Carter et al. (2017) and others, when insurance indices do not
track farmer yields closely enough their value to farmers is often very low; in
many cases too low to justify paying the premium. It is therefore critical that
even when indices are calculated at the regional level that they correlate well
with farmer yields.

In recent years, the launch of new satellites has led to a dramatic increase in
the frequency and resolution of satellite data. Higher resolution data means bet-
ter yield estimates, which potentially means better index insurance. However,
we are only beginning to explore the potential of these new data in this context,
in large part because while there is a massive amount of satellite imagery, it
is costly and difficult to obtain georeferenced crop yield estimates (labels) to
link to satellite data. For a detailed summary of recent advances in satellite
data and their potential impact for index insurance, see Benami et al. (2021).
This paper proposes linking satellite data to existing household surveys for that
reason: these surveys have been conducted for years, many are freely available,
and they provide a set of ‘labels’ in the form of household level reports of crop
yields.

A number of existing studies have explored crop yield prediction by apply-
ing machine learning to satellite data (Bose et al., 2016; Gandhi et al., 2016;
You et al., 2017; Cai et al., 2019; Mann et al., 2019; Kaneko et al., 2019; Qin
et al., 2017; Kamilaris and Prenafeta-Boldú, 2018; Jiang et al., 2020; Chlin-
garyan et al., 2018). A specific application of machine learning and satellite
data to index insurance is explored by Hobbs and Svetlichnaya (2020), who use
forage quality data crowdsourced by pastoralists on the ground in lieu of the
survey data we use here. Existing studies more broadly differ from this paper
in that they tend to use use more precisely georeferenced survey data and are
not focused on the index insurance context. Indeed, using data that is only
georeferenced to the parish (or regional) level would not be useful for the many
applications in which tracking individual farmer yields is the goal. However,
in the index insurance case, it has the potential to be adequate since indices
themselves are calculated at the regional level even when more detailed data
exists. This paper is the first that we are aware of to test the viability of using
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existing survey datasets without exact georeferencing to construct an insurance
index.

The remainder of this paper is organized as follows: Section 1 requires the
data sources used in our analysis, Section 2 describes the methods used to
predict yields with satellite data, Section 3 describes our models’ performance,
and Section 4 discusses the usefulness of our model and potential avenues for
future work.

1.1 Data

Limited data quality and availability is an important barrier to developing bet-
ter index insurance products using machine learning methods. Large, accurately
labeled datasets of precisely georeferenced crop yields would be ideal, but collect-
ing such data is expensive. Unlike in other domains, humans cannot accurately
label aerial images of fields with accurate yields simply by looking at them.
Perhaps the most accurate approach is crop-cutting, which means going to a
specific plot, cutting down the crops, and recording the quantity produced for
that plot. However, since productivity varies from farm to farm and even within
farms by plot, putting together an ideal dataset would require doing this sort
of harvesting and careful recording for every plot. While crop cuts are in some
cases available, they generally correspond to a particular point in a particular
field, and the datasets that contain them are generally not very large.

In light of these challenges, this paper seeks to develop a reasonably accurate
yield prediction model with the less-than-ideal data available from household
surveys. These data are based on farmer responses, which have been shown to
be prone to measurement error (Gollin and Udry, 2021). Thus, a major goal
of this study is to test whether we can obtain a useful insurance index despite
that measurement error.

An additional challenge associated with attaining quality data is the fact
that new harvests only come into existence once a year. Thus, even if we were
able to finance and begin an effort to attain better data today (which would
be useful), it would take years before we could use the dataset for insurance
indices. Farmers are facing droughts today, so finding a workable solution with
data we can use now has large potential benefits.

1.1.1 Survey Data

Since approximately-georeferenced household survey data is relatively widely
available and goes back quite far in time, it may be possible to link these data
to satellite images to create accurate-enough models for identifying poor crop
yields. In this study, we use World Bank’s Living Standard Measurement Sur-
vey Integrated Surveys on Agriculture (LSMS-ISA) from Uganda. We selected
Uganda because it has a large number of years available and a relatively large
number of households over time.

We obtain crop yield estimates for between 579 and 1260 households per
year for the years 2005, 2009, 2010, 2011, 2013, 2017, and 2018. In total, our
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sample contains 6,447 observations, which is low by machine learning standards
but relatively high by household survey standards. We restrict our sample to
maize because it is one of the primary staple crops in Uganda and is grown
throughout the country; future studies testing this method with other crops
would be useful. In the survey, maize production is reported at the plot level
in kilograms along with the plot size in acres and the share of the plot used for
maize. The total production figure is multiplied by the maize share of the plot
and divided by the plot size to obtain maize produced per acre.

Importantly, the survey data we are using does not contain precise geograph-
ical locations; the most precise geographical information we have is the name
of the parish in which the household is located. However, as shown in Figure 1,
parishes in Uganda are quite small, so our goal is to obtain relatively accurate
predictions using this approximate geographic information. To that end, we link
the survey data to satellite data aggregated by parish. Since many household
survey datasets contain only this level of geographic specificity to protect re-
spondent privacy, this same limitation will be present in most publicly available
household survey datasets. Conducting our analysis this way is a good test of
the viability of using household surveys for this purpose going forward.

1.1.2 Satellite Data

We link our survey data to an array of satellite images and satellite-derived in-
dicators, combining vegetation indices with data on precipitation, temperature,
and other weather variables. We collected all these data using Google Earth
Engine.

For both weather data and other images, we follow a similar two-step process.
For each parish, we focus on pixels designated as cropland by the Global Food
Security Analysis-Support Data (GFSAD) (Teluguntla et al., 2015). We then
aggregate those pixels across the parish and link them to households in the
survey in the same parish and year. The GFSAD data and parish boundaries
are shown in Figure 1; we aggregate other data across the pixels colored green
within each parish outlined on the map.

We focus on two vegetation indices. The first, the Normalized Differenced
Vegetation Index (NDVI) is among the most widely used for assessing vegetation
health from space. We obtain these data from a LANDSAT 8-day composite
made from Tier 1 orthorectified scenes. The second, the Green Chlorophyll
Index (GCI) is obtained from MODIS Terra Surface Reflectance Daily Data.
GCI has been shown to outperform NDVI in predicting crop yields in some
settings, which is why we also include it (Burke and Lobell, 2017). We have
data for each of these indicators at the pixel level (30m pixels for NDVI and
250m pixels for GCI), and we aggregate them by taking the monthly maximum
value for each pixel and averaging those at the parish level so that we can merge
it with the satellite data. Taking the pixel-level maximum before aggregation
is a commonly used practice in estimating crop yields because it captures pixel
when vegetation appears to be greatest (see, for example Lewis et al. (1998)).
This is particularly important in harvest months, since after harvest the pixel
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NDVI is likely to be quite low even if crop yields were high.
We also collect weather data from two sources. Data on temperature and

precipitation come from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA5 Dataset. We obtain data on root moisture and transpi-
ration from NASA’s Global Land Data Assimilation System (GLDAS) dataset,
which combines satellite and ground-level sources. We aggregate these data by
taking pixel means by month and then aggregating across the parish boundaries.

Figure 3 depicts annual trends in NDVI, GCI, and precipitation for the three
parishes in which we have the largest number of yield observations. A clear
annual trend is apparent in the precipitation figure, while the others appear
quite noisy. However, despite their noisy, GCI and NDVI are among the most
important features in generating accurate crop yield predictions.

Figure 2 provides an overview of the steps we took to aggregate the data,
as well as how it is used in each of the two models to be described in detail
in the next section. To summarize, by aggregating the satellite data at to the
parish level, we are able to link it to the survey data to obtain regional yield
predictions. We evaluate those predictions using individual-level survey data
since it is the correlation between the index and individual level outcomes that
matter most for insurance quality.

2 Method

Because the satellite data we use for this survey are collected at the parish level
and our survey data generally includes multiple households per parish, 100%
accuracy (or an R2 of 1) is not possible given the data. However, this data
situation reflects the real-world estimation goal of insurance indices: we want
to estimate a regional index that is a good-enough approximation of individual
yields.

Throughout our analysis, we start by splitting the data into two parts, ran-
domly selecting 70% of the observations to form a training set and 30% to form
a test set.

We begin our analysis by creating a benchmark based on an ‘area yield’
insurance contract. Area yield contracts are based on average regional yields
rather than satellite or weather data, and have traditionally been administered
via crop cuts across a region. Collecting these data is costly, but is generally
considered to be more accurate. Constructing a theoretical area yield therefore
provides a reasonable upper bound for what we might hope our satellite data
will be able to achieve in terms of prediction.

After creating a benchmark, we test two different methods of predicting
individual yields from satellite data. First, we attempt to directly train an
array of machine learning models to predict individual yields. Second, we try a
two-step method in which we train models to predict parish averages and then
test their ability to predict individual yields. As we will discuss in the Results
section to follow, the second method is much more effective, likely because
averaging yields at the parish level reduces noise and eliminates the problem of
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asking the model to predict multiple outcomes from a single set of inputs.

2.1 Benchmark

We construct our benchmark by first generating regional average yields. Let yit
represent the yield for farmer i year t and yPt the parish-year average1 for all
farmers in parish P . Using our training set, we then estimate a simple linear
regression

yit = α+ βyPt + εit (1)

where α is a constant, β is the coefficient that relates farmer average yields
to individual yields, and εit is a disturbance term. We evaluate the resulting
model’s predictive power by measuring the R2 of predictions from the resulting
model on the test set. This provides a reasonable upper bound for how well our
satellite data based models might do, since this model uses the original data as
an input. In other words, it provides a measure of how much of the variation in
individual yields is explainable using regional data.

2.2 Predicting Individual Yields

In the next part of our analysis, we train an array of machine learning models.
Specifically, we train a linear regression, an elastic net, a simple neural network,
and a random forest to predict individual yields based on satellite data aggre-
gated to the parish level. Each month’s values for each variable is included as
a feature, so there are 12 NDVI features, 12 GCI features, 12 precipitation fea-
tures, 12 temperature features, 12 root moisture features and 12 transpiration
features. In total, this means the models have 72 features to use to predict crop
yields. For the elastic net and random forest, we conduct a grid search across
possible hyperparameters. For the neural network, we test only a single sim-
ple architecture with four hidden layers, each of which contain 200-400 neurons.
Thus, while the results show the random forest outperforms the neural network,
it is likely that with additional experimentation these results could be improved
upon.

As discussed above, this is potentially challenging for the models, since the
satellite data is the same for all households in the same parish-year. Presumably
for this reason, we will show in the next section that this does not work partic-
ularly well; the two-stage approach we attempt next is much more successful.

2.3 Two-stage Prediction

Since satellite data are aggregated to the parish level, it is intuitive that they
might be best suited to predicting parish-level average yields. Unfortunately,
that is not our end goal. However, we can use a model trained to predict parish-
level averages and test its performance on individual yields. We train the same
set of models using the same approach as for the individual yield predictions
and achieve much better results using this method. Specifically, we aggregate
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the training set by calculating parish-year mean yields per hectare and train the
models on that dataset. We then test the model on individual yields in the test
set.

3 Results

We evaluate goodness-of-fit using R2 of our model’s predictions on the test set.
This metric has the advantage of simplicity and ease of interpretation; it can be
thought of as the share of the variance in the outcome variable explained by the
model. However, for more precise evaluation of index insurance products more
sophisticated measures such as the average farm-level R2 proposed by Stigler
and Lobell (2020) or the nonlinear measures that take into account risk aversion
proposed by Carter and Chiu (2018) ought to also be considered. Because this
study seeks only to provide proof-of-concept and compare different models, we
focus for now on traditional R2 measures.

Our results are summarized in Figure 5. In summary, our two-stage approach
which trains a model to predict parish averages and then tests that model’s fit
against individual yields is much more effective than our initial attempt to
directly train a model on individual yields. Further, random forests and neural
networks significantly outperform linear models.

3.1 Area Yield Benchmark

As described above, since we know our aggregated satellite data are can be linked
to our surveys only at the parish level while our survey in many cases contains
multiple observations in a given parish, it is not possible for our models to
achieve a perfect fit. The best they could reasonably do is to equal an area-yield
index, which is calculated using regional averages.1 For that reason, as described
above, we use the R2 constructed from regional averages as the benchmark
against which to compare other models. The area yield index achieves an R2

of 0.30, meaning 30% of the variance in individual yields can be explained
by regional averages. This indicates that there is significant variation that is
idiosyncratic to individual farms, and it also means that building a high-quality
index insurance product may be difficult: insurance is less valuable when it
covers a smaller share of total risk.

3.2 Individual Yield Prediction

Predicting individual yields directly from satellite data worked quite poorly. An
ordinary least squares regression achieved a dismal R2 of just 0.04, our elastic
net and neural net achieved just 0.05, and a random forest just 0.06. This

1Area yield indices are form of index insurance product that use regional averages as the
insurance index. Insurance products based area yield indices are generally regarded as the
most accurate products, but they are much more costly to implement than satellite data based
contracts due to the cost of collecting data in the field.
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is much worse than our benchmark, and suggests that attempting to predict
individual yields with aggregate data is a poor strategy. The two-step strategy
described next was much more effective.

3.3 Two-Step Yield Prediction

Our two-step yield prediction used a model trained to predict parish averages
and evaluated its performance in predicting individual yields. The results were
much more promising. While ordinary least squares achieved predictive accu-
racy of just 0.07, that figure still exceeded the best outcome from our initial
approach. Our elastic net did no better. However, significant improvements
were seen in the random forest and neural network, which both achieved pre-
dictive accuracy of 0.21 and 0.19, respectively, which compares quite favorably
to our benchmark model’s 0.30.

The R2 of 0.21 achieved by our best model is quite favorable given the
challenges associated with predicting smallholder yields and the fact that we are
attempting to predict individual yields using parish-level data. For comparison,
Burke and Lobell (2017) achieve a maximum R2 of 0.4 for predicting smallholder
yields using data with exact farm locations, meaning they are able to focus on
the precise pixels where the farm is located. The fact that we can reach an R2

of 0.21 using only very imprecise location data is promising given the challenges
associated with predicting smallholder yields.

Another way of evaluating our model performance is to measure its accuracy
at predicting parish-level averages in the test set. In a sense, this is a ‘fairer’
challenge for the algorithm, since the data it uses to predict is at the parish level.
Figure 4 shows the predictive accuracy of our two-step model at the parish level
as well as the household level. Interestingly, the random forest outperforms the
neural net at the parish level, but performs slightly worse at the household level.
Again, since the benefits of insurance are at the household level, the household
level measures are more important for determining which model would yield the
most beneficial insurance product.

4 Discussion

The analysis above showed that satellite data aggregated to the parish level can
predict regional and individual yields relatively well. Using simple methods we
were able to predict 20% of variation compared to 30% for our benchmark ‘area-
yield’ model based on actual regional averages. In other words, our analysis
suggests that about 30% of variation in individual yields is due to factors such as
weather that are common throughout a region. The remaining 70% is likely due
to farm-specific factors which might include difference in soil, fertilizer usage,
planting distances, seeds used, or myriad other factors. The 30% figure therefore
represents an approximate upper bound for how well a model based on regional
satellite data could do, and our model approaches that upper bound.
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As discussed above, satellite data is much more cheaply available than farmer-
reported yields. It is also available nearly instantly at any given time, meaning
insurance programs based on it can react much more quickly in the event of
droughts. Our benchmark model approximates the accuracy that would be
achieved by a yield-based insurance program since it is based on yield data just
as those programs generally are. Given the expense of obtaining farm-level data
and the fact that our simple models approached its level of predictive accuracy,
we think this analysis suggests that models based on satellite and survey data
could potentially be used to create low cost insurance products that would help
farmers meaningfully manage risk. Of course, as reflected by the R2 from our
benchmark model, farmers face many individual-level risks that cannot be man-
aged with regionally calculated insurance indices, but low cost coverage that can
reduce the impact of regional shocks can still be beneficial.

This paper represents an initial attempt at using satellite and survey data
to develop insurances where more precisely georeferenced farmer data are not
available. The models we trained in this analysis were very simple; additional
work using the same data could surely improve on these results and push our
accuracy even closer to the area-yield benchmark. There are three areas in
particular where improvement is likely possible. First, more careful feature
engineering would likely yield improvements: focusing on just harvest months
rather than all twelve months of the year, and including information on parish
locations might allow the algorithm to learn that harvest dates vary throughout
the country, for example. Second, our neural network was very elementary;
experimenting with different architectures could surely build on our current
results. Third, experimenting with gradient boosting and other methods could
probably yield improvements.

Another promising avenue for expansion is to increase the size of our dataset
by including survey data from other countries, especially nearby ones with simi-
lar farming systems. In particular, LSMS-ISA data are also available for Tanza-
nia, and various household survey datasets are available for Kenya and Ethiopia.
Combining several of these datasets would likely improve results, and could also
ideally produce a model that would be accurate across East Africa. This sort of
model could then be used as a starting point for future index insurance programs
in the region.

Future work also ought to test the quality of these indices from a farmer
welfare perspective as described by Carter and Chiu (2018). While this study
has shown that machine learning methods and satellite data can get relatively
close to an area-yield benchmark, it may be that even that benchmark does
not explain enough of the variation in individual yields to produce an insur-
ance product whose benefit justifies its cost. In that case, smaller regions than
Ugandan parishes may be necessary to make a quality insurance product. Bet-
ter data and methods cannot overcome problems caused by high within-region
yield variation, meaning our benchmark R2 of 0.3 is an upper bound for the
potential performance of parish-level contracts. This is a common challenge for
all insurance indices and does not mean that the model is not useful. Rather, it
reflects the fact that many risks affect farmers at the individual level and index
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insurance does not cover those risks.
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Figures
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Figure 1: Cropland area in Uganda (green) with parish boundaries (white). All
data in cropland pixels were aggregated at the parish level.
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Figure 2: Overview of data aggregation and model training process.
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Figure 3: Annual trends in NDVI, GCI, and precipitation in the three parishes
with the largest numbers of surveyed households.
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Figure 4: Two-stage models are trained to predict parish averages, and the most
accurate model achieves an R2 of 0.68 in predicting those averages. Predictions
are less accurate at the individual level, as we expect, but still compare favorably
to our area yield benchmark.
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Figure 5: Two-stage prediction models, which were trained on parish average
data but then used to predicting individual yields, significantly outperformed
models directly trained to predict individual yields.
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